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Resumen

Los metabolitos bioactivos, desempefian un papel esencial en la calidad sensorial de los
alimentos, influyendo en su color, aroma, sabor y aportando beneficios para la salud. En
frutas y verduras, no solo determinan el dulzor, sino que también participan en procesos
metabdlicos y de regulacion genética, modificando la calidad y las caracteristicas
organolépticas. La conversidn de aminoacidos en compuestos volatiles y aromaticos,
mediada por el etileno, es clave en el desarrollo de perfiles sensoriales. Asimismo, los acidos
grasos, mediante enzimas como lipoxigenasas y alcohol deshidrogenasas, se transforman en
aldehidos, cetonas y ésteres que aportan aromas y sabores distintivos, mientras que los
terpenos y carotenoides contribuyen a la pigmentacién y el aroma caracteristico de muchas
especies vegetales. Por otro lado, existen rutas que generan compuestos distintivos, como
la reaccion de Maillard y la degradacién térmica de lipidos. Estos procesos dan lugar a
moléculas, como pirazinas, pirroles, piridinas, aldehidos, cetonas, alcoholes y ésteres, que
enriquecen la complejidad sensorial de los alimentos procesados. Ademas, la variabilidad
en la produccién de estos compuestos entre diferentes frutas y verduras, junto con la
interaccidn entre lipidos y productos de la reaccion de Maillard, sigue siendo un area de
gran interés. En este contexto, profundizar en el conocimiento de las rutas biosintéticas
involucradas y optimizar su regulacion permitird mejorar la calidad y estabilidad de los
compuestos aromadticos y bioactivos en los alimentos. La integracion de enfoques
biotecnolégicos y analiticos es clave para potenciar los beneficios sensoriales y
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nutricionales, promoviendo un mejor aprovechamiento de estos metabolitos en la industria
alimentaria.

Palabras clave

Alimentos, aromas, compuestos volatiles, reacciéon de Maillard, sabor.

Abstract

Bioactive metabolites play an essential role in the sensory quality of foods, influencing their
color, aroma, flavor, and providing health benefits. In fruits and vegetables, they not only
determine sweetness but also participate in metabolic and genetic regulation processes,
modifying quality and organoleptic characteristics. The conversion of amino acids into
volatile and aromatic compounds, mediated by ethylene, is crucial for the development of
sensory profiles. Likewise, fatty acids, through enzymes such as lipoxygenases and alcohol
dehydrogenases, are transformed into aldehydes, ketones, and esters that impart distinctive
aromas and flavors, while terpenes and carotenoids contribute to pigmentation and the
characteristic aroma of many plant species. On the other hand, there are pathways that
generate distinctive compounds, such as the Maillard reaction and the thermal degradation
of lipids. These processes give rise to molecules such as pyrazines, pyrroles, pyridines,
aldehydes, ketones alcohols esters, which enrich the sensory complexity of processed foods.
Furthermore, variability in the production of these compounds among different fruits and
vegetables, along with the interaction between lipids and Maillard reaction products,
remains an area of great interest. In this context, deepening the understanding of the
biosynthetic pathways involved and optimizing their regulation will enhance the quality and
stability of aromatic and bioactive compounds in foods. The integration of biotechnological
and analytical approaches is key to boosting sensory and nutritional benefits, promoting
better utilization of these metabolites in the food industry.

Keywords
Aromas, foods, Maillard reactions, taste, volatile formation.

Introduccion
La generaciéon de aromas y sabores en frutas y vegetales es un proceso complejo que

involucra multiples rutas biosintéticas y mecanismos moleculares. Conocer en profundidad
algunas de las rutas metabdlicas que generan estos compuestos ofrece oportunidades
significativas para mejorar la calidad alimentaria, desarrollar nuevos productos y optimizar
procesos de produccién de manera mds sostenible y eficiente.

Por lo cual esta revision se centra en analizar y determinar las principales rutas responsables

de la generacion de sabores y olores en los alimentos, un tema clave para comprender los
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mecanismos bioquimicos que contribuyen a estas propiedades sensoriales. En primera
instancia, indagaremos en la conversion de azlcares de frutas y vegetales, lo cual es de
relevancia debido a su funcion como metabolitos que regulan muchos aspectos del
metabolismo, entre ellos, el desarrollo y expresion de genes, generando sabores dulces
(Hernandez-Bernal et al., 2022 y Vazquez-Cuecuecha et al., 2023)

Asimismo, los acidos grasos, mediante la lipdlisis y la oxidacidén, generan alcoholes,
aldehidos y cetonas, componentes clave en los aromas y sabores fuertes y suaves (Shahidi
y Hossain, 2022). Ademas, los terpenos contribuyen con notas florales y citricas, como en
el té verde (Qin et al., 2024). Mientras que los carotenoides, como los encontrados en
tomates y zanahorias, se descomponen para formar compuestos volatiles como iononas,
gue afladen notas dulces y afrutadas (Mele et al., 2020). Por otro lado, los aminoacidos,
ademas de ser precursores de compuestos nitrogenados y sulfurados esenciales en el perfil
de sabor, participan en la reaccién de Maillard para generar volatiles especificos como
pirazinas y tioles (Liu et al., 2022).

Por lo tanto, el tratamiento térmico, a través de reacciones como Maillard y la oxidacion de
lipidos, es crucial para la generaciéon de compuestos aromaticos y de sabor, mejorando el
perfil sensorial y afectando la estabilidad y liberacién de compuestos (Troise et al., 2020).
Los azucares, como la glucosa y la fructosa, son esenciales en las reacciones de Maillard,
donde reaccionan con aminodcidos para formar compuestos que aportan aromas tostados
y sabores complejos (Arias-Giraldo y Lépez-Velasco 2019).

Este conocimiento permitira ajustar procesos para realzar perfiles sensoriales, desarrollar
alimentos con beneficios para la salud y crear tecnologias de procesamiento innovadoras.
Sin embargo, la complejidad de estas rutas, la variabilidad genética y ambiental, y la

necesidad de técnicas analiticas avanzadas son desafios que deben abordarse.

Materiales y Métodos
El presente trabajo se desarrolld bajo el enfoque de una revision con el objetivo de sintetizar

y analizar criticamente la evidencia cientifica disponible sobre las principales rutas
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metabdlicas involucradas en la generacidon de aromas y sabores en alimentos. Para la
busqueda de informacién se consultaron las siguientes bases de datos cientificas: Scopus,
Web of Science (Wo0S), ScienceDirect, PubMed y Google Scholar. Estas plataformas fueron
seleccionadas por su amplio alcance en literatura revisada por pares en el area de ciencias
de los alimentos, bioquimica y biotecnologia.

Los términos de busqueda se definieron en espafiol e inglés, combinando palabras clave,
entre ellas: aromas, sabores, compuestos volatiles, metabolitos secundarios, rutas
metabdlicas, reaccion de Maillard, flavor formation, aroma compounds, plant secondary
metabolites, Maillard reaction, y lipid oxidation. Se priorizaron articulos publicados entre
los afios 2005 y 2025, con el fin de incluir estudios recientes sin excluir investigaciones
clasicas relevantes.

Los criterios de inclusién fueron:

1. Articulos originales y de revisién publicados en revistas cientificas indexadas,

2. Estudios relacionados con la biosintesis de compuestos aromaticos en frutas,
vegetales y alimentos procesados

3. Investigaciones que abordaran rutas metabdlicas asociadas a azucares,
aminoacidos, acidos grasos, terpenos y carotenoides, asi como procesos térmicos como la
reaccion de Maillard.

Como criterios de exclusidn, se descartaron trabajos que no presentaran conexion directa
con el desarrollo de aromas y sabores en alimentos o aquellos con informacidn insuficiente
para su andlisis comparativo.

Finalmente, la seleccién de los articulos se realizé en tres etapas:

i) Revision de titulos y resimenes,

ii) Lectura del texto completo,

iii) Andlisis de pertinencia cientifica y coherencia con los objetivos de la revision.

La informacién seleccionada se organizd y sistematizd segln el tipo de ruta metabdlica
(azucares, aminoacidos, acidos grasos y terpenos/carotenoides) y segun los procesos

térmicos involucrados, permitiendo una integracion coherente con el desarrollo tematico
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del presente articulo.

Desarrollo

1. Biosintesis

Los metabolitos bioactivos en los alimentos, como los pigmentos, metabolitos secundarios,
y los fitoquimicos contribuyen a las propiedades sensoriales, ellos confieren beneficios a la
salud, y ademas imparten color, aroma, y sabor a las comidas, y enmascaran olores o
sabores indeseables (Pavagadhi et al., 2020 y Diez-Simon et al., 2019). En este contexto, se
destacan algunos metabolitos secundarios de relevancia y sus funciones (figura 1). Por
ejemplo, el eugenol, responsable del aroma del clavo y la albahaca; la curcumina, un
pigmento caracteristico de la circuma, y compuestos como la capsaicina (responsable del
picante en el aji) estan relacionados con las rutas de los shikimatos, derivados de
fenilpropanoides (Chempakam y Ravindran, 2023; Deryabin et al., 2019; Chumroenphat et
al., 2019 y Huang et al., 2021). Por otro lado, la alicina, el principio activo del ajo, se origina
en la via de biosintesis de los glucosinatos, generan un sabor picante (Gulsen et al., 2024).
Finalmente, los acidos fendlicos (clorogénico, gdlico y ferulico), comunes en muchas
especies, también derivan de estas rutas, particularmente a partir de los intermediarios
relacionados con fenoles y quinonas (Marchiosi et al., 2020). Esta relacién ilustra cémo las
rutas metabdlicas de metabolitos primarios, como el ciclo de Krebs y los shikimatos, estan
estrechamente conectadas con la biosintesis de metabolitos secundarios de importancia

bioldgica y ecoldgica.
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Figura 1. Rutas que generan metabolitos primarios y secundarios. Adaptado de: Qaderi

et al. (2023) y Aharoni y Galili (2011).

1.1 Conversion de azucares

A partir de las rutas metabdlicas ilustradas en la (figura 1), es posible identificar cémo se
generan diversos sabores y aromas a partir de la glucosa, es ampliamente conocido que la
cantidad de azlcares presente en las frutas y verduras contribuyen al dulzor, estos acttan
como sustratos en el metabolismo del carbono y la energia, asi como la biosintesis de
polimeros (Nookaraju et al., 2010); ademas actian como moléculas de senal e influyen en
los procesos metabdlicos regulando la expresion genética, rigen la floracidn, las respuestas
por medio de mecanismos de defensa (Du et al., 2024; Khan et al., 2022 y Khan et al., 2020)
y la estructura celular, que desencadenan reacciones metabdlicas, para controlar la
actividades bioquimicas y procesos fisioldgicos que alteran las caracteristicas
organolépticas (Duran-Soria et al., 2020) por lo que se ha demostrado que a medida que

envejece o madura la planta el contenido de sacarosa aumenta (Lv et al., 2022).
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No obstante, los azlcares transportados se almacenan o metabolizan en varias células y
tejidos, desde donde pueden afectar a la calidad de la fruta; sin embargo, hay otros factores
gue modifican el contenido de azlcares en los frutos como son, los procesos fisioldgicos,
metabdlicos interconectados, y la red reguladora de genes (Lu et al., 2020).

El azlcar en las frutas se sintetiza a través de la fotosintesis vegetal, y la regulacion de estos,
se da por diversos factores de transcripciéon, mecanismos epigenéticos, y fitohormonas (Du
et al., 2024). La sacarosa y el nitrato actuan como sefiales que regulan la expresidén genética
para optimizar los flujos metabdlicos segun las condiciones ambientales predominantes.
Este proceso ocurre principalmente en el citosol, donde se lleva a cabo la sintesis de
sacarosa (Ashihara et al., 2011 y Liu et al., 2023).

De forma coordinada, entran en juego, las vias de pentosa fosfato en los plastidios y el
citosol se unen como via para desplazar metabolitos, el traslado es realizado por la xilosa-
5-fosfato y en menor instancia la ribulosa-5-fosfato, hacia el ciclo de Benson-Calvin, al
mismo tiempo, en el citosol, la sintesis de la sacarosa es catalizada por la enzima suc-fosfato
sintasa y suc-fosfato fosfatasa, produciendo la sacarosa cuando se libera ortofosfato y suc-
6-fosfato, una vez utilizado UDP-glucosa y fructosa-6-fosfato como sustrato (Griffiths et al.,
2016 y Kruger y Von Schaewen, 2003). Seguidamente, la sacarosa se hidroliza por las
invertasas produciendo glucosa y fructosa o por la sacarosa sintasa que produce UPD-
glucosa y fructosa; finalmente, la sacarosa presenta un distintivo sabor a fruta madura
(Quick et al., 2017; Harish et al., 2017 y Liu et al., 2023).

Hay tres superfamilias principales de transportadores de azucar: la superfamilia de
facilitadores principales (MFS), los transportadores de glucosa dependientes del sodio y los
transportadores de azlcar eventualmente exportados (DULCES) (Xuan et al., 2013). La
proteina DULCE se identificd por primera vez en la ascidia (Hamada et al., 2005). Como
transportador ubicado en vacuolas tanto para hexosa como para sacarosa, la
sobreexpresién de AtSWEET16 resulté en una mayor tolerancia a la congelacién y una mejor
germinacién, asi como una eficiencia en el uso de nitrégeno en Arabidopsis (Klemens et al.,

2013). SWEET9 fue identificado como un transportador de azlcar especifico del nectario
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que funciona en la secrecién de néctar para recompensar a los polinizadores (Lin et al.,
2014) Los patrones de expresidon sugieren que la familia SWEET esta involucrada en el
crecimiento y desarrollo de todos los érganos de las plantas. Existe un conjunto de genes
DULCES estrechamente relacionados con el desarrollo de flores, semillas y frutos en cada
especie (Liu et al., 2019).

Cabe destacar que laedad del fruto de vainilla al momento de la cosecha influye
significativamente en su aroma y sabor. La sacarosa es el principal azlicar presente en el
fruto verde (80 %), acompafiada de pequefias cantidades de glucosa y fructosa, las cuales
aumentan ligeramente a medida que el fruto madura debido a la hidrdlisis de la sacarosa
(Hernandez et al., 2021). El contenido de macro y micronutrientes aumenta conforme
avanza la edad del fruto; los macronutrientes con mayor concentracion fueron el Ca y el K,
mientras que el Mn fue el micronutriente mas abundante. Por otro lado, se identificaron
diez metabolitos relacionados con azucares, siendo la D-glucosa el compuesto mas
enriquecido, en donde se reflejan en distintas cantidades de azUcares asociadas al nivel de

dulzor (Li et al., 2020).

1.2 Conversion de aminoacidos
A partir de las rutas metabdlicas ilustradas en la (figura 1), es evidente que los metabolitos
primarios, como los aminodcidos, desempeiian un papel central en la generacion de
metabolitos secundarios que contribuyen a los sabores, aromas y funciones bioldgicas en
los vegetales. Entre los aminodcidos se destaca la metionina como un precursor esencial en
diversas rutas metabdlicas, su papel no se limita Unicamente a la sintesis de proteinas, sino
gue también sirve como punto de partida para la formacién de compuestos bioactivos
clave. En este contexto, la conversion de aminodcidos desempefia un rol fundamental para
los procesos de maduracidn en frutas y vegetales, siendo clave en la produccidn de etileno.
Esta generacidn de etileno con sus respectivos mecanismos bioquimicos, tienen lugar en el
citoplasma. Esta hormona, tiene como precursor principal la metionina (figura 2) que se

considera fundamental para la sintesis de otras biomoléculas esenciales, como poliamidas,

NATURAL
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cisteina y glutatién (Liu et al., 2022), también existe una relacién de la produccién de
compuestos volatiles con la expresion de genes diferencial y la biosintesis de etileno, que
promueven el ablandamiento y color de las frutas (Duran-Soria et al., 2020). La metionina
se transforma en S-Adenosil-metionina (SAM) por accidon de la enzima SAM sintetasa
(SAMS). La misma por ejecucion catalitica de la enzima AAC-sintasa (ACS) es metabolizada
a acido 1-Aminociclopropano-1carboxilico (ACC). Posteriormente actuara la ACC-oxidasa
(ACO) como catalizador en la conversién de ACC a etileno, acido cianhidrico (HCN) y diéxido
de carbono (CO3) (Gavin et al., 2021).

En la formacion de poliamidas la SAM es desviada para sintetizar espermina y espermidina
por la accién de la enzima SAM-descarboxilasa en donde la metionina actla como
equilibrador en la sintesis de etileno (Franco et al., 2023). Si bien observamos un papel
antagonista, en el que la ACC puede transportarse de forma activa a las células objetivo,
donde puede almacenarse o desactivarse mediante conjugacion para hacer jasmonil-ACC,
malonil-ACC, o y-glutamil-ACC, por lo que la ACO produce la hormona activa que es
percibida por la misma célula o se esparce a las células vecinas (Fernandez-Moreno vy
Stepanova, 2019). En ocasiones, por biosintesis auto catalitica el etileno puede regular su
propia produccién. Sin embargo, en otro estudio donde se evalla la putrescina exdgena
para extender la vida Gtil de las bananas en postcosecha, indican que la putresina altera los
pardmetros respiratorios y los picos de produccién de etileno se ven alterados, por lo que
se ha observado en este estudio que en la biosintesis de etileno y poliamidas, el carbono
puede dirigirse a la formacion de uno u otro, en donde se ve alterado el color y la textura
en las bananas (Franco et al., 2023); lo observado muestra que, la biosintesis toma
diferentes rutas y hasta se indica que es autocalitica por lo que se evidencian interacciones
antagonista entre los compuestos iniciales y finales, que desencadenan una cascada de
sefalizacion y dan como resultado la activacién y represidon de factores de transcripcion
(Wang et al., 2023).

Conocer el proceso madurativo de los frutos climatéricos y no climatéricos por medio de la

biosintesis de etileno ayuda a controlar aromas, sabores, color y firmeza de los frutos; sin
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embargo, durante el estudio de la biosintesis se ha observado problemdticas en donde la S-
Adenosil-metionina es limitada por la enzima ACC-oxidasa, por lo que se ha indagado en
genes que controlan dicha biosintesis (Gavin et al., 2021), si bien estos sistemas no estan
del todo esclarecidos, se ha encontrado que hay genes que codifican la enzima
ramnogalacturonano liasa durante el desarrollo y maduracién del fruto y la produccién de
etileno en tomate, jugando un papel importante en la firmeza del fruto (Trillo-Hernandez

et al,, 2021).

Ciclo de Yang Regulacion a nivel transcripcional y postraducional

. il- NH,
> adf?no_sn N ? ACC sintasa ACC oxidasa
metionina ( N ACS NH2 (ACO)

N 1
0 7\ c—c
\ HyN \)3 OH HO 0] | |
4
OH H H
OH HO” Yo
1-amino-ciclopropano Etileno

Metionina ATP Pll+ Pi SAM sintetasa -1-carboxilico
(ACC)

Acido jasménico
Acido malénico o glutémico
Malonil-ACC

Control de la cantidad de metionina Control de la maduracion, textura, color y desarrollo de |a flor

Figura 2. Representacion esquematica de la ruta de biosintesis de etileno. Adaptado de:
Pattyn et al. (2021).

Al mismo tiempo, en la etapa de maduracién, se resaltan otros compuestos responsables
delaroma como son los aldehidos, alcoholes y ésteres que son sintetizados por aminoacidos
y acidos grasos; en donde la B-oxidacién de acidos grasos, la via lipoxigenasa y el
metabolismo de aminodcidos son las tres rutas mas importantes de la biosintesis del aroma
de manzana (Yang et al., 2022). Algo similar ocurre con el aminodcido fenilalanina que
genera fenoles volatiles fundamentales, responsables de las caracteristicas aromaticas,
utilizando la via shikimato/arogenato tales como el fenilpropanoide y benzoides
(glucdsidos) mediante la enzima fenilalanina amoniaco liasa (PAL) hasta la produccion de p-
alcohol p-coumdrilico y alcohol coniferilico, en donde la hidroxilacidn del anillo aromatico y

la reduccién del Ester forman los fenilpropanoides que desempefian un papel esencial en
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las cualidades organolépticas en plantas y verduras (Schieber y Wiist et al., 2020).
Ademads, los compuestos fendlicos (polifenoles) también se derivan a través de la via del
acido acético tales como, cumarinas, lignanos, flavonoides, isoflavonoides, antiocianinas,
proantocianidinas y estilbenos (Pinto et al., 2021). Un ejemplo de polifenoles son los
elagitaninos, que son atribuidos como los antioxidantes mas potentes, responsables de la
astringencia en fresas, frambuesas, bayas y frutos secos (Bakkalbasi et al., 2008); otro papel
de los fenoles es que influyen en la reducciéon del brillo en el color de la fruta (Diamanti et
al., 2015).

Cabe resaltar que, la biosintesis de compuestos aromadticos y de sabor a partir de
aminoacidos como la L-fenilalanina y la L-tirosina, asi como del acido cinamico, se lleva a
cabo a través de rutas secundarias altamente especializadas como las derivadas del
shikimato, por lo tanto, la formacién de perfiles de sabores es un proceso complejo que
implica multiples vias metabdlicas y una serie de reacciones enzimaticas (Shen et al., 2020).
La figura 1 permite observar cdmo estas rutas metabdlicas interconectan los metabolitos
primarios y secundarios, evidenciando la importancia de los aminodcidos como sustratos
basicos en este proceso.

También cabe destacar que, dentro de la conversién de aminoacidos, resalta la L-
fenilalanina, que es transformada en acido cindamico a través de la accion de la enzima
fenilalanina amonio-liasa (PAL). Esta es una reaccién clave en la via de los fenilpropanoides,
gue produce una amplia gama de compuestos aromaticos, entre estos se encuentra la
conversion de acido cinamico a acido p-cumarico, un intermediario crucial en la biosintesis
de flavonoides y otros fenilpropanoides; de hecho, en los alimentos de origen vegetal
influye notablemente en sus propiedades organolépticas, contribuyendo a la acidez o
amargor; los derivados del dcido cindmico presentan aroma dulce y especiado y actuan
como copigmentos (Schieber y Wiist, 2020; Pinto et al., 2021; Shen et al., 2020 y Petersen
et al., 2020).

Finalmente, la L-tirosina, similar a la L-fenilalanina, es transformada en 4&acido p-

hidroxicinamico mediante una serie de reacciones enzimaticas (Tan et al., 2020). La tirosina
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amonio-liasa (TAL) convierte la tirosina en p-hidroxicinamato, que puede ser
posteriormente convertido en otros compuestos aromaticos; los compuestos formados a
partir de L-fenilalanina, L-tirosina y acido cindmico son esenciales para el perfil sensorial de
frutas y vegetales (Rhodes y Wooltorton, 1978). Esta reaccidén contribuye a la conexion
intrinseca entre la bioquimica vegetal y las propiedades organolépticas, afectando el aroma
y el sabor, y creando una experiencia sensorial rica y compleja. A grandes rasgos, los
compuestos generados por esta via contribuyen a aromas florales, herbales, especiados y

dulces (Ong et al., 2018 y Mostafa., 2022).

1.3 Utilizacidn de acidos grasos

En el recorrido por las rutas metabdlicas claves, abordamos la importancia de los acidos
grasos, otro aspecto importante el cual cumple con diversas funciones esenciales en el
metabolismo. Los acidos grasos cumplen con diversas funciones en el metabolismo como
ser el componente sustancial de todas las membranas, ajustan la expresion de genes, sirven
como proteccion mecanica, como combustible metabdlico, pero también actiuan como
biomarcadores, cumplen un papel en la regulacién de la fluidez y de sus derivados (De
Carvalho y Caramujo, 2018).

La via metabdlica de los acidos grasos es fundamental en la biosintesis de compuestos
volatiles que contribuyen al aroma y sabor de frutas y vegetales. Esta via incluye varias
etapas y procesos enzimaticos que transforman los acidos grasos en una variedad de
compuestos aromaticos y de sabor; como son los aldehidos, alcoholes, cetonas y ésteres
insaturados de cadena corta; entre las enzimas de mayor importancia que afectan esta via
metabdlica, encontramos a las lipoxigenasas (LOX), hidroxiperéxido-liasa (HPL) y alcohol
deshidrogenasa (ADH) (Davila-Avifia et al., 2011).

Cabe seiialar que los acidos grasos son sintetizados enddégenamente por la accién conjunta
de la acetil-CoA carboxilasa (ACC) y los acidos grasos sintasas (FAS), la enzima ACC cataliza
la conversion de acetil-CoA en malonil-CoA; por lo que esta ruta conocida como biosintesis

de Novo proporciona acido palmitico, 16:0, que pueden ser sustrato de elongasas para
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transformarse en acido estearico 18:0 (Ohlrogge et al., 2018 y Carraro et al., 2019). Se puede
sefalar que, la actividad de la ACC se basa en el transporte de proteinas de biotina carboxil,
biotina carboxilasa y la subunidad a y B de la carboxiltransfereasa (He et al., 2020).

Dado que las lipoxigenasas (LOX) son enzimas cruciales en la oxidacidn de acidos grasos
poliinsaturados como el 4cido linoleico y el linolénico, esta ruta produce compuestos como
hexanal, hexenales, hexanol y acetatos, responsables del aroma verde y afrutado (Christie
y Harwood, 2020; Yadav et al., 2018 y Genovese et al., 2021). Se han identificado
compuestos volatiles derivados de la ruta de la lipoxigenasa entre estos: (Z)-3-hexenal, (Z)-
3-hexenol, hexanal, 1-penten-3-ona, 3-metilbutanal, (E)-2-hexenal, 6-metil-5-hepten-2-
ona, salicilato de metilo, 2-isobutiltiazol y B-ionona, estos a diferentes concentraciones
producen el aroma de un tomate fresco y maduro, y disminuyen a medida que el fruto
madura (Ties y Barringer, 2012). Paralelamente, la via de la 5-lipoxigenasa metaboliza el
acido araquiddnico, conduciendo a la sintesis de leucotrienos (Cheng et al., 2025).

A la vez, la ruta de la lipoxigenasa da lugar a la insercidon de oxigeno molecular en los acidos
grasos, formando hidroperdxidos de acidos grasos, tales como los 13-hidroperdxidos (13-
HPOD) y los 9-hidroperdxidos (9-HPOD) a partir del acido linoleico y linolénico que son
hidrolizados por la hidroperéxidos liasa (HPL) en compuestos volatiles como aldehidos de
seis atomos de carbono, alcoholes y oxodcidos, a estos se le atribuye un aroma verde y
fresco (Vincenti et al., 2019 y Tang et al., 2024).

Entre las moléculas generadas con olor y sabor a partir de la via metabdlica de los acidos
grasos, se encuentran varios compuestos, aldehidos como el hexanal, contribuyen a los
aromas frescos y verdes en frutas y vegetales, y son responsables, por ejemplo, del
caracteristico olor a tomate (Davila-Avifia et al., 2011). El trans-2-hexenal proporciona un
aroma fresco y cortante, caracteristico de manzanas, y es el componente principal en las
hojas del té verde (Klee et al., 2018 y Uchida et al., 2022), el nonadienal aporta un aroma
floral y dulce, comun en pepinos (Zhao et al., 2021). Los alcoholes generados por la alcohol
deshidrogenasa, incluyen el hexanol, con un aroma herbal y notas florales (Tomé-Rodriguez

et al, 2022), el cis-3-hexen-1-ol, cis-3-hexenal, trans-2-hexen-1-ol, y 2,6-
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dimethylcyclohexanol que presentan un aroma fresco, a hierba cortada, vegetales y frutas
(zhang et al., 2026) por otro lado, las cetonas como la 6-metil-5-hepten-2-ona contribuyen
a los aromas afrutados, fresco y dulces, siendo el principal componente de los frutos
maduros de tomate proveniente de la escisidén oxidativa del licopeno (Diestefano et al.,
2022) y los ésteres, que no son directamente productos de la via de los acidos grasos, pero
se pueden formar debido a reacciones entre los alcoholes y acidos generados en esta via,
los mismos son cruciales en el aroma frutal, como el éster hexilico, que presenta tonos
frutales hasta citricos o ligeramente florales (Mostafa et al., 2022 y Xu et al., 2024).

Una variante atractiva de los acidos grasos son los omega-3 (w3), que son acidos grasos
polinsaturados que se presentan en los alimentos como: a-linolénico (18:3 w3, a-ALA),
acido eicosapentaenoico (20:5 w3, EPA) y 4cido docosahexaenoico (22:6 w, DHA). El a-ALA
puede encontrarse en algunos aceites vegetales (de linaza, soja y canola), chia, nueces,
manies y aceitunas; el EPA, DPA y DHA en los aceites de pescado principalmente de aguas

frias como salmadn, atun, sardinas, algas y microalgas (Feliu et al., 2021).

1.4 Sintesis de terpenos y carotenoides

Como ultima via metabdlica en las plantas, los terpenoides, son una amplia clase de
metabolitos secundarios sintetizados en las plantas en cantidades pequefias, desempenan
un papel esencial tanto en la pigmentacion como en el aroma caracteristico de diversas
especies vegetales (Zhang et al., 2023). Los carotenoides, por ejemplo, son responsables del
color naranja, rojo y amarillo, estos pigmentos de color pertenecen a los metabolitos
secundarios lipdfilos resultantes de la via isoprenoide (Riaz et al., 2021).

Estos compuestos son sintetizados a partir de precursores como el isopentenil pirofosfato
(IPP) y el dimetilalil pirofosfato (DMAPP), los cuales se generan en la via del mevalonato
(MVA) que tiene lugar en el citosol o la via del metileritritol fosfato (MEP), que tiene lugar
en los plastidios (figura 3), en las células vegetales estas rutas se dan en diferentes lados
(Yao et al., 2022).

Se ha demostrado que los genes influyen significativamente en la regulacién transcripcional

68



NIDA

de la biosintesis de carotenoides en el tomate, en la cual el nivel de expresién SIWRK35
aumenté durante la maduracién de la fruta, sin embargo, la via de etileno regula la
sefalizacion de esta proteina, lo que indica que los factores de transcripcién controlan el
crecimiento, la floracién, la maduracion, entre otros (Yuan et al., 2022).

Este mismo efecto de activacion de etileno en la biosintesis de carotenoides se ve seializada
durante el desarrollo y coloracion de la fruta, a medida que estos evolucionan, la expresion
de los niveles de transcripcién y la proteina CsERo61 aumentan (Sathasivam et al., 2021).
Numerosas investigaciones han evidenciado que el etileno es una hormona vegetal crucial
para el control de la maduracion de los frutos, afectando aspectos como el color, la textura,
el aroma, el sabor y diversos compuestos nutricionales (Pech et al., 2018).

Estos procesos bioquimicos no solo afectan la apariencia visual de las plantas, sino también
su perfil sensorial. Desde los colores vibrantes hasta los aromas distintivos, cada grupo de
terpenoides juega un papel crucial en la adaptacién de las plantas al entorno y en su
interaccion con otros organismos (Simkin, 2021).

Aunqgue algunos compuestos aromaticos, como los apocarotenoides, también poseen
propiedades beneficiosas para la salud, destacan el B-ciclocitral, la B-ionona, el geranial, la
acetona de geranilo, la theaspirona, la a-damascenona, la B-damascenona y la 6-metil-5-
hepten-2-ona (MHO). Estos compuestos contribuyen significativamente a los perfiles
aromaticos de diversas flores y frutos en plantas horticolas y son altamente valorados en la
industria del sabor y la fragancia (Shi et al., 2020).

En términos de diversidad, los terpenoides se clasifican en varios grupos segun el nimero
de unidades de isopreno que los componen, entre ellos podemos encontrar a los
monoterpenos (figura 3), que consisten en dos unidades de isopreno (Mabou y Yossa,
2021), estos son los compuestos mas voldtiles, que suelen encontrarse en plantas y
alimentos procesados (Paulino et al.,, 2022); aportando aromas afrutados, florales,
mentados, citricos, frescos, herbaceos, camporaceos, lefiosos, pinos y picantes (Zhang et

al., 2023; Mahanta et al., 201 y Cui et al., 2024).
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Figura 3. Sintesis de geranil pirofosfato mediante las rutas del MEP y mevalonato. Adapatdo de:

Pathak et al. (2023).

Por otro lado, la figura 3. Nos muestra a los sesquiterpenos, constituyentes de tres unidades
de isopreno, siendo sintetizados por la sesquiterpeno sintasa, lo que resulta en moléculas
con mayor peso molecular, menos volatiles con aromas mas persistentes que se perciben
como “notas de salida” u olor similar a los citricos (Harms et al., 2020), caracteristicos de
especias como la canela (Stevens y Allred, 2022) y el jengibre (Al-Tannak et al., 2022).

Asi mismo, los di y triterpenos, por su parte, confieren diferentes sensaciones gustativas y
la estimulacion del receptor dulce hTAS1R2/R3, que a menudo confieren sabores amargos,
dulces y regaliz (Schmid et al., 2021); mientras que los fenilpropanoides, conducen a la
generacion de fenoles volatiles activos derivados de dcidos grasos y aminoacidos por medio
de la via del shikimato, estos compuestos generan olor en alimentos derivados de plantas
(Mostafa et al., 2022) que incluyen compuestos como el eugenol del clavo de olor y el anetol

del anis estrellado, estos agregan aromas distintivos gracias a su estructura quimica que
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combina un anillo aromatico con una cadena lateral; también, se puede encontrar eugenol
en la salsa de chile jalapefio (Capsicum annum) y papaya (Carica papaya) (Fuentes et al.,
2020). Ademas, se encuentran otros compuestos terpénicos menos voldatiles y mas
complejos, asi como derivados alifaticos y sustancias con contenido de azufre y nitrégeno,
que contribuyen a los perfiles aromaticos y de sabor en plantas como el ajo y el brécoli

(Pinto et al., 2021 y Marcinkowska y Jelen, 2022).

2. Generacion de aromas por tratamiento térmico

La generacién de aromas y sabores no solo depende de las rutas metabdlicas biosintéticas,
sino que también puede ser influenciada por procesos térmicos. Uno de los mecanismos
mas relevantes en este contexto es la reaccidon de Maillard (MR), un proceso no enzimatico
que ocurre entre los azlcares reductores y los grupos aminos libres presentes en los
alimentos. Esta reacciéon es clave en la formacion de compuestos aromadticos y la
modificacion de las propiedades organolépticas, contribuyendo significativamente al
desarrollo de nuevos perfiles sensoriales (Kathuria et al., 2023), en donde los sabores
distintivos de los alimentos procesados térmicamente se generan cominmente a través de
la degradacion de Strecker como etapa final de la MR (figura 4), que es responsable de
generar diversos compuestos heterociclicos, incluyendo pirazinas, pirroles, piridinas, entre
otros (Salehi, 2021). Estos compuestos son sensorialmente activos e influyen directamente
sobre la calidad de los alimentos, como el sabor, el color y la textura (Yu et al., 2021) dichos
compuestos se dividen en tres grandes moléculas, las que contienen azufre, nitréogeno y
oxigeno, siendo estas ultimas las moléculas claves que generan aromas en la RM (tabla 1)
(Starowicz y Zielinski, 2019).

La reaccién de Maillard se puede subdividir en tres etapas principales (figura 4). En primer
lugar, la etapa inicial conduce a la formacion reversible de glicosilaminas, las cuales se
reordenan a través de los reordenamientos de Amadori o Heyns (Igartua y Sceni, 2023). Esta
etapa, ademas de influir considerablemente en el sabor y el color de los alimentos

procesados, tiene la capacidad de producir sabores frescos y deseables (Han et al., 2024) se
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ha demostrado que, los reordenamientos de aminoacidos de Amadori pueden servir como
aditivos de sabor prometedores, ofreciendo una buena oportunidad para reemplazar los
componentes de sabor inestables tradicionales, especialmente los productos de la reaccion

de Maillard (Luo et al., 2021).

Condensacién de RESIWUCEHNGEISWEE 3 Siesssenbanssissmiadiissvtnisessaansval
Maillard Amadori
Degradacién de
Strecker

g 1 .
Aldosa C— Aldosilamina Aldosamina 1

Aldehidos

Amina i 3 X H
Cetosa «——» Cetosilamina —___, Cetosamina :f Descomposicién
: de cetosaminas
Restructuracién

de Heyns

Compuestos .
carbonilos muy H

rEB([VOS
Polimerizaciones

Figura 4. Reaccion de Maillard. Adaptado de: Yu et al. (2021) y Provost (2019).

Cabe resaltar que la imparticién del color marréon se atribuye principalmente a las
melanoidinas; sin embargo, debido a su naturaleza compleja y heterogénea, sus estructuras
quimicas aln no estan completamente definida (Wang et al., 2011 y Zhang et al.,2024). Se
ha demostrado que las modificaciones en el color pueden estar relacionadas con factores
descritos por Muralla y Coelho, quienes sugieren que ciertos compuestos derivados de la
reaccion de Maillard influyen en estas variaciones cromaticas. Ademas, el sabor a caramelo
o tostado se debe a la formacién de matol, mientras que el sabor a fresa esta asociado a la
presencia de funareol (Coelho Neto et al., 2022). Estos cambios en el color y el perfil de
sabor podrian estar relacionados con el reordenamiento de Amadori, ya que este proceso
guimico influye en la formacién de compuestos intermedios que participan en la evolucion
de los pigmentos y sabores caracteristicos de los alimentos procesados.

En segundo lugar, la segunda etapa corresponde a la degradacién de los productos de los
reordenamientos de Amadori y Heyns, se conoce como, degradacién de Strecker, que

conduce, en particular, a la formacién de compuestos heterociclicos responsables de los
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olores. Se ha encontrado que los sabores de los productos secos y tostados a alta
temperatura son fuertemente afectados por la formacién de estos compuestos
heterociclicos que generan sabores térmicos. Estas estructuras ciclicas contienen un dtomo
diferente al carbono, como el nitrégeno (por ejemplo, en pirazinas y piridinas) (Parr et al.,
2023).

Si observamos en detalle, las pirazinas no solo se forman en los alimentos a través del
tratamiento térmico, sino que también se generan mediante la fermentacién (Fayek et al.,
2023). Estas pirazinas heterociclicas voldtiles contienen nitrégeno y contribuyen a los
sabores de horneado, tostado y a nuez en los productos alimenticios (Starowicz y Zielinski,
2019).

El tercer paso corresponde a la polimerizacién de los intermedios de reaccién producidos
durante el segundo paso, formandose compuestos heterociclicos nitrogenados (Gartua y
Sceni, 2023). Ademas, aunque se ha detectado que estos productos generados por la
reaccidon de Maillard en una etapa avanzada pueden tener un impacto negativo y aumentar
la citotoxicidad, no obstante, estos compuestos heterociclicos y las melanoidinas tienen una
funcién beneficiosa, como ejercer capacidades antioxidantes, antibacterianas y otras

acciones biolégicas (Ke y Li, 2023).

Tabla 1. Compuestos generados a partir de la reaccidn de Maillard.

Compuesto Caracteristicas  Alimento Estructura Referencia
Moléculas que Pirazinas Sabores a: Carne de res, Yu et al. (2021);
contienen Horneado, cebada \ Mortzfeld et al.
nitrégeno Tostado, tostada, caco, N (2020).
Nuez café, mani, "\/ N
papas fritas y ~d
verduras.
Pirroles Grano tostado  Tés, arroz Yang et al
Aroma a pan cocido y pan \ (2023);
Adams y De
NH

Kimpe (2006).
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Oxazoles Sabor a nuez, No reportado 0 Maga y Katz.
dulce, y notas 7 (1981)
verdes \<_ N/
Pirrolinas Aroma a pan Pan, arroz, NH Verma Y
palomitas de Srivastav.
maiz y trigo (2020); Zuljevi¢
y Spaho (2024)
Oxazolinas Percursor de Chocolate Granvogl
aroma en el oscurocon70% O/w et al.
chocolate de cacao \_ (2012)
oscuro — N
Compuestos Furanos Notas de olor a Pan, galletas, Liu et al. (2020)
que contienen nuez y tostado. mermeladas, O
oxigeno Sabor dulce, miel, cereales, \§ /;
frutal, tostado, café.
picante.
Furfurales Dulce, Pan sin gluten, ) Starowiy
amaderado pasta, dulce de o) Zielinski.
leche \ (2019)
Piranonas No reportado Té verde Starowi y
Zielinski.
, (2019)
Compuestos Tiazoles Sabor a carne Estofado de al.
qgue contienen asada y nuez carne, papa, (2020) Parr et
azufre papas fritas, 7/ al. (2023)
nueces
tostadas
(alimentos
fritos, asados o
a la parrilla)
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Tabla 1. Compuestos generados a partir de la reaccion de Maillard.

Tiazolinas Olores que van Cebada Parr et al
desde los tostada, pollo (2023);
salados hervido, carne 7 Yeo et al
(carnosos, hervida. (2022)
grasos y de — N
cebolla) hasta
los dulces

(palomitas de
maiz, nueces vy
arroz tostado)

Ditiazinas Sabor a No reportado Werkhoff et al.

N
alimento ,é (1992)
calentado ’
N

Furantioles Notas de nuez  Carne asada, (o) Sun et al
nuez, patata \ (2023)

El estudio de los compuestos generados en la reaccion de Maillard es fundamental para
comprender la complejidad de los sabores y aromas en los alimentos procesados. La tabla
1 refuerza la importancia de los compuestos generados en la reaccién de Maillard,
destacando su papel en la formacidon de sabores y aromas caracteristicos en diversos
alimentos. La presencia de compuestos heterociclicos nitrogenados como pirazinas, pirroles
y oxazoles confirma que la degradacion de Strecker en la segunda etapa contribuye a la
complejidad sensorial de productos como el café, la carne y el pan. Asimismo, la formacién
de furanos y furfurales en la tercera etapa sugiere su implicacién en la polimerizacién y en
la generacion de melanoidinas, las cuales pueden influir tanto en el color como en la
bioactividad de los alimentos.

Por otro lado, los compuestos que contienen azufre, como tiazoles, tiazolinas y ditiacinas,
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desempeiian un papel crucial en los sabores asociados a alimentos cocidos y tostados. Estos
compuestos aportan notas carnicas, a nuez y a cebolla, lo que resalta la importancia de la
reaccion de Maillard en la generaciéon de sabores complejos en productos como carne
asada, cebada tostada y estofados. Sin embargo, la formaciéon de ciertos compuestos
azufrados puede estar vinculada a olores no deseados o incluso a la generacion de
sustancias con potencial impacto en la salud.

Este doble papel de los compuestos de Maillard abre el debate sobre la necesidad de
optimizar las condiciones de procesamiento térmico para maximizar la formacién de
compuestos deseables y minimizar aquellos con efectos adversos. Si bien estos compuestos
aportan caracteristicas sensoriales atractivas y pueden tener propiedades antioxidantes y
antibacterianas, su potencial citotoxicidad y la posibilidad de generar sustancias
indeseables hacen necesario un control preciso en la produccién de alimentos.

Tras la degradacion por la reaccién de Maillard, la temperatura también influye en la
transformacién de los lipidos presentes en los alimentos. La degradacidn térmica de estos
compuestos genera una amplia variedad de sustancias volatiles y no volatiles, que afectan
el aroma, el sabor y el color de los productos procesados (Ramos et al., 2023 y Marchesino
et al., 2020). La degradacién de lipidos a diferentes temperaturas produce compuestos que
contribuyen al sabor y color de los alimentos (Wang et al., 2022). Esta degradacion se
produce fundamentalmente mediante autooxidacidon, fotooxidacion vy oxidacién
enzimatica, que originan una gran variedad de compuestos volatiles (Shahidi y Hossain,
2022).

Dentro de este marco se ha demostrado que el linoleato de metilo afecta significativamente
el perfil de sabor carnoso y que la oxidacién de lipidos es evidente a altas temperaturas
(Wang et al., 2022). Asimismo, indica que, durante las reacciones oxidativas, se forman
principalmente aldehidos, cetonas, alcoholes y acidos carboxilicos, algunos de los cuales
son compuestos electroactivos (Ramirez-Montes et al., 2023). Mientras que, los resultados
de muestran que las altas temperatura disminuyen el contenido de tocoferoles, polifenoles,

benzopireno, que generan un sabor fuerte fragante y que el compuesto mas influeyente es

NATURAL

76



NIDA
NATURAL

el 2,5-dimetilo proporcionando sabor a barbacoa (Dinh et al., 2021).

Ademas, los aldehidos saturados en la reaccién de Maillard (RM) incrementan la acidez y
disminuyen el sabor umami, mientras que los insaturados cambian los compuestos no
voldtiles como tioéteres arilicos y acidos grasos. Por otro lado, los aldehidos saturados
reducen el dorado, modificando sabores mediante productos de oxidacion lipidica (Dinh y
Schilling, 2021). Se ha demostraron que la oxidacidn de acidos grasos insaturados genera
hidroperéxidos que luego se descomponen en productos de oxidacién de lipidos
secundarios volatiles y olorosos, incluidos aldehidos, alcoholes y cetonas (Shahidi y Hossain,
2022).

Las interacciones entre los productos resultantes de la oxidacidn de lipidos y los compuestos
formados por la reaccion de Maillard desempefian un papel mas crucial en la formacion del
sabor de la carne de lo que se habia considerado previamente, ademas, los compuestos
volatiles originados de las grasas aportan matices de sabor que permiten la identificacidn
de las especies (Dinh y Schilling, 2021). En los productos cdrnicos, los lipidos son
descompuestos por la lipasa para generar precursores de sabor como los acidos grasos
libres, estos precursores se oxidan adicionalmente, produciendo compuestos de sabor
volatiles (Fu et al., 2022). Por lo que, la variacion en los aromas de la carne cocida (res,
cerdo, aves y ovejas) se debe a la existencia de una interaccién entre los lipidos y la reaccion
de Maillard. Entre las moléculas que contribuyen a los aromas de la carne cocida se
encuentran los aldehidos alifaticos de cadena corta (C6-C10), el 1-octen-3-ol (o 1-octen-3-
ona) y los compuestos heterociclicos que contienen azufre o nitrégeno (Sohail et al., 2022).
En definitiva, la reaccidon de Maillard y la degradacién de los lipidos son procesos clave en
la generacion de sabores y aromas en los alimentos procesados, con una compleja
interaccion entre compuestos nitrogenados, oxigenados y azufrados. Aunque estos
procesos potencian el perfil sensorial y pueden conferir propiedades beneficiosas, también
plantean desafios en términos de control de calidad y seguridad alimentaria. La
optimizacion de las condiciones térmicas y la comprensién de los factores que influyen en

estas reacciones resultan esenciales para maximizar los beneficios sin comprometer la
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estabilidad ni la inocuidad de los productos. Asi, el estudio de estas interacciones sigue

siendo un campo de gran interés para la industria alimentaria y la investigacion cientifica.

Conclusién
Los metabolitos bioactivos en alimentos, como terpenos, pigmentos, compuestos fenélicos

y derivados de azucares, aminodcidos y acidos grasos, desempefian un papel fundamental
en la calidad sensorial y nutricional de los alimentos. La literatura revisada indica que la
generacion de aromas y sabores esta influenciada por diversas rutas metabdlicas, como la
lipoxigenasa en la oxidacién de lipidos, la descarboxilacién y transaminacién de
aminodcidos, y la degradacion térmica de azucares, procesos que contribuyen al desarrollo
de perfiles sensoriales Unicos en los alimentos procesados.

Sin embargo, persisten desafios en la produccién y estabilidad de estos compuestos. La
variabilidad en su biosintesis, influenciada por factores genéticos y ambientales, dificulta su
control y aplicaciéon industrial. Ademas, la identificacién y caracterizacion de estos
metabolitos sigue siendo un reto debido a la complejidad de las reacciones quimicas
involucradas.

Es necesario seguir investigando la optimizacion de estas rutas metabdlicas para mejorar la
produccién de compuestos aromaticos y bioactivos con impacto positivo en la calidad y
seguridad de los alimentos. La integracion de enfoques biotecnolégicos y analiticos
permitird un mejor aprovechamiento de estos metabolitos, favoreciendo el desarrollo de

alimentos con propiedades sensoriales mejoradas y beneficios potenciales para la salud.
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